Mineralization of aromatic compounds by brown-rot basidiomycetes - mechanisms involved in initial attack on the aromatic ring.

نویسندگان

  • Fumika Kamada
  • Suzuna Abe
  • Nobuhiro Hiratsuka
  • Hiroyuki Wariishi
  • Hiroo Tanaka
چکیده

Benzaldehyde and its metabolic intermediates were effectively degraded by the brown-rot basidiomycetes Tyromyces palustris and Gloeophyllum trabeum. The pathway of benzaldehyde degradation was elucidated by the identification of fungal metabolites produced upon the addition of benzaldehyde and its metabolic intermediates. The oxidation and reduction occurred simultaneously, forming benzyl alcohol and benzoic acid as major products. Hydroxylation reactions, which seemed to be a key step, occurred on benzaldehyde and benzoic acid, but not on benzyl alcohol, to form corresponding 4-hydroxyl and 3,4-dihydroxyl derivatives. 1-Formyl derivatives were oxidized to 1-carboxyl derivatives at several metabolic stages. All of these reactions resulted in the formation of 3,4-dihydroxybenzoic acid. This was further metabolized via the decarboxylation reaction to yield 1,2,4-trihydroxybenzene, which may be susceptible to the ring-fission reaction. Ring-U-14C-labelled benzaldehyde and benzoic acid were effectively mineralized, clearly indicating that the brown-rot basidiomycetes are capable of metabolizing certain aromatic compounds to CO2 and H2O, despite the fact that brown-rot fungi cannot degrade polymeric lignin. Inhibitor experiments, using hydroxyl radical scavengers, catalase and cytochrome P450 inhibitors, strongly suggested that the aromatic hydroxylation reactions found in the brown-rot fungi are catalysed by intracellular enzyme(s), but not by Fenton-reaction-derived hydroxyl radicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for cleavage of lignin by a brown rot basidiomycete.

Biodegradation by brown-rot fungi is quantitatively one of the most important fates of lignocellulose in nature. It has long been thought that these basidiomycetes do not degrade lignin significantly, and that their activities on this abundant aromatic biopolymer are limited to minor oxidative modifications. Here we have applied a new technique for the complete solubilization of lignocellulose ...

متن کامل

Phenolic Compound Utilization by the Soft Rot Fungus Lecythophora hoffmannii.

Nine phenolic compounds were metabolized by the soft rot fungus Lecythophora hoffmannii via protocatechuic acid and subsequently cleaved by protocatechuate 3,4-dioxygenase as determined by oxygen uptake, substrate depletion, and ring cleavage analysis. Catechol was metabolized by catechol 1,2-dioxygenase. Fungal utilization of these aromatic compounds may be important in the metabolism of wood ...

متن کامل

Evidence from Serpula lacrymans that 2,5-dimethoxyhydroquinone Is a lignocellulolytic agent of divergent brown rot basidiomycetes.

Basidiomycetes that cause brown rot of wood are essential biomass recyclers in coniferous forest ecosystems and a major cause of failure in wooden structures. Recent work indicates that distinct lineages of brown rot fungi have arisen independently from ligninolytic white rot ancestors via loss of lignocellulolytic enzymes. Brown rot thus proceeds without significant lignin removal, apparently ...

متن کامل

Degradation of aromatic compounds in plants grown under aseptic conditions.

The aim of the work is to investigate the ability of higher plants to absorb and detoxify environmental pollutants - aromatic compounds via aromatic ring cleavage. Transformation of 14C specifically labelled benzene derivatives, [1-6-14C]-nitrobenzene, [1-6-(14)C]-aniline, [1-(14)C]- and [7-(14)C]-benzoic acid, in axenic seedlings of maize (Zea mays L.), kidney bean (Phaseolus vulgaris L.), pea...

متن کامل

The application of C-labeled tetramethylammonium hydroxide (C-TMAH) thermochemolysis to the study of fungal degradation of wood

This paper presents the results from an assessment of the application of a new molecular analytical procedure, CTMAH thermochemolysis, to study the chemical modi®cation of lignin by white-rot and brown-rot fungi. This technique di€ers from other molecular chemolysis procedures (e.g. TMAH thermochemolysis and CuO alkaline oxidation) as it enables one to determine the amount of hydroxylated aroma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 148 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2002